
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014617
TITLE: Halt-Normal Plots for Multi-Level Factorial Experiments

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the Eighth Conference on the Design of
Experiments in Army Research Development and Testing

To order the complete compilation report, use: ADA419759

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP014598 thru ADP014630

UNCLASSIFIED



HALF-NORMAL PLOTS
FOR MULTI-LEVEL FACTORIAL EXPERIMENTS

S. A. Krane
C-E-I-R, Inc., Dugway Field Office

1. INTRODUCTION. Half-normal plots for the interpretation of Zp
factorial experiments have been developed and popularized largely through
the work of Cuthbert Daniel (see Daniel [1956] and[1959]). In this

method the Zp - 1 main effects and interactions are estimated from ob-

servations on the ZP treatment combinations. The empirical cumulative
distribution of these estimates is then graphically compared with a cu-
mulative distribution derived from a normal population. A rationale for
this procedure is found in the approximate normality of the null distri-
bution of the estimates, based upon normality of experimental errors or
upon the tendency embodied in the Central Limit Theorem. According
to Daniel, the half-normal plot permits the analyst to judge the reality
of the largest main effects and interactions and serves to indicate bad
values, heteroscedasticity, dependence of variance on mean and some

types of defective randomization. The object of the present paper is to
indicate and illustrate possible applications of half-normal plots to
balance multi-level factorial experiments in general.

2. AN EXAMPLE. It appears easiest to introduce the technique of
half-normal plotting for balanced multi-level factorial experiments in the
context of a particular example. For this purpose we shall employ
Example 8. 1 of Davies [1954J. According to the authors (p. 291, "the
data . . . are taken from the results of an investigation into the effects

on the physical properties of vulcanized.rubber of varying a number of
factors, the property recorded being the wear resistance of the samples,
and the factors being:

A five qualities of filler
B three methods of pretreatment of the rubber
C four qualities of the raw rubber . . .

The data are reproduced in Table 1. From the data, the author develops
the usual analysis of variance as shown in Table 2. The interpretation
(Davies [1954, p. 296] ) notes the significance of all main effects and two-

factor interactions when tested against the three-factor interaction as
error.
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264 Design of Experiments

In order to analyze the given experimental data by half-normal
plotting, we shall reduce the data to single degree of freedom sums of
squares. The method to be used depends upon the definition of complete
sets of orthogonal contrasts for each of the factors A, B, and C. This
definition generally is somewhat artibrary, but it is our experience
that an experimenter familiar with the nature of the factor levels and
the purpose of the experiment can, in most instances, provide suffi-
cient justification for the prior definition of a meaningful complete set
of single degree of freedom orthogonal contrasts among the levels.
The use of orthogonal polynomials for quantitative levels is often indi-
cated, while for qualitative levels, meaningful comparisons among
certain levels are often obvious. On occasion, only a partial set of
orthogonal comparisons will appear to be of intrinsic value and it may
be necessary to complete the orthogonal set by adding contrasts of no
apparent importance. In the absence of useful information on the nature
of the levels (except that they are all qualitative) in the present example,
we shall be totally arbitrary in defining the contrasts, but will attempt
to indicate their potential interpretations. -These contrasts are shown
in Table 3. For factor A, contrast A0 , is the "null" or "average"

contrast*, while A1 compares the average of levels 1 and 2 against

the average of levels 3, 4 and 5, A compares level 1 vs. level 2, A 3

compares level 3 against the average of levels 4 and 5 and A 4

compares level 4 with level 5. The orthogonality of the set is evident
in that the coefficients sum to zero for all contrasts except the null
contrast and the sum of products of coefficients is zero for all pairs
of contrasts. For factor B, the non-null contrasts compare level 1
with level 2 with the average of levels 1 and 3. (In another context,
B1 and B2 are the orthogonal polynomials for three equally spaced

levels, B 1 being the linear contrast and BZ the quadratic. ) For factor C,

the contrasts C1 , C 2 and C 3 make the following comparisons among levels,

respectively- (1 and 2) vs. (3 and 4), (1 and 3) vs. (2 and 4) and (l and 4)

Daniel 1962 has suggested the term "null" is inappropriate because
of the generally positive expectation of this contrast. We chose the
term because (i) it is connoted by our zero subscript notation, (ii)
this contrast is not a comparison among levels, and (iii) this contrast
is generally "of no consequence" in the analysis.

°0
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Table 3. ORTHOGONAL CONTRASTS EMPLOYED
Factor A

Level Sum of
Contrast 1 2-. 5 Squares

A0  +1 +1 +1 +1 +1 5
Al +3 +3 -2 ,-2 -2 30
A2  +1 -1 0 0 0 2

A3  0 0 +2. -1 -1 6

A4  0 0 +1 -i 2

Factor B

Level Sum of
Contrast 1 2 3 Squares

BO +1 +1 +1 3

B1  -1 0 +1 2
B2  -1 +2 -1 6

Factor C

Level
1 2 3 4 Sum of

Contrast .... ... . .. _ _ _ Squares

C0  +1 +1 +1 +1 4
CI -1 -1 +1 +1 4
C2  -1 +1 -1 +1 4
c +1 -1 -1 +1 4
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vs. (Z and 3). These contrasts would be of interest, e. g. , in the event

that factor C incorporated two subfactors, say D and E, where

levels 1 and 2 are at the low level of D and levels 3 and 4 at the

high level of D, while levels I and 3 are at the low level of E and 2

and 4 at the high level of E. Then C 1 is the effect of D, C 2 is the

effect of E and C 3 is the interaction of D and E.

The three sets of contrasts (Al, A 2 , , A A 4 ), (B 1 , B2 ) and

(CI, C 2 , C 3 ) will provide a b3sis for reducing the sums of squares for

factor A (4 d.f.), factor B (2 d. f.) and factor C (3 d. f.) to indepen-

dent single degree of freedom sums qf squares. It remains to develop

such a basis for the two- and three-factor interactions. A natural
method for accomplishing this is the extension of the original single

factor contrast sets to interaction contrast sets. This method is exem-
plified in Table 4 for Factors B and C. All possible combinations

Of the levels of B and C are employed as columns, while rows are
contrasts. For any combination of a particular level, say i, of B
with a particular level, say j, of C, the coefficient in the contrast

B qCr is obtained by multiplication of the coefficient of level i of B

in the contrast B by the coefficient of level j or C in the contrast

Cr. Sums of squares of the B and C contrasts may be obtained by

multiplication of the corresponding sums of squares for B and for C.

Of the 12 orthogonal contrasts in Table 4, B 0 C 0 is the null contrast

while the contrasts BOCI, B 0 C 2 , BOC 3 , BIC 0 and B 2 C 0 are simply the

original contrasts CI, Ca, C 3 , B and B 2 , respectively, averaged over

all levels of the other factor. The six contrasts BICi, BIC 2 , BIC 3 ,

B2 I, B 2 C 2 , B 2 C 3 are new and constitute a basis for partitioning the BC
interaction sum of squares (6 d. f. ) into orthogonal single degree of

freedom sums of squares. Application of this method will likewise pro-
duce bases for partitioning the sums of squares for AB (8 d. L), AC

S (12 d. f. ) and ABC (24 d. f.

The above method of defining interaction contrasts is incorporated
in the method we employ for calculating half-normal variates by desk
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calculator. A sample work sheet for this method is shown in Table 5a
and 5b*. Section I of this table is merely a recopying of the original
data from Table 1. In this section a column of five numbers represents
the observations for the five levels of A over a particular one of the
twelve combinations of levels of B and C represented by columns. Section
II is computed by operating on these columns with the contrasts A 0 , A 1 ,

A?, , A A 4 . For example, products of the coefficients ofA 0 with the
corresponding elements of a particular column are formed and these
five products are summed and entered in Section H in the first row of
that column. Similarly, sums of products of coefficients of Al with

corresponding elements of columns are entered in the second row of
Section II, and so forth. Thus each element of Section II is formed as
a sum of products of coefficients of, say, A with corresponding ob-

p
servations and is entered on the ( p+1 )-th row of the appropriate column.

Section II may be visualized as an aggregation of 20 rows of three
elements each, where each row corresponds to a particular contrast of
A and a particular level of C. The three elements of each row corres-
pond to the three levels of B. Now Section III is formed from Section II
by summing products of coefficients of the B contrasts and corresponding
elements of each row of three. Each such sum of products is entered in
the corresponding row, with the sum of products from coefficients of Bq
entered as the ( q + 1 )-th element of that row.

Section III may be visualized as comprising four sub-sections of 15
elements each, with the elements of a sub-section corresponding to a
particular contrast of AB (i. e. , a particular combination of a contrast
of A and a contrast of B) and the four sub-sections corresponding to the
four levels of C. Section IV is formed from Section III by summing pro-
ducts of coefficients of the C contrasts and identically placed elements
from the four corresponding sub-sections. The sum of products is
entered in the corresponding place of one of the sub-sections of Section IV,
with the sum of products from coefficients of C entered in the (r+l)-thr
sub-section.

This calculation methodd is essentially the same as that given in
Appendix 8G of Davies 1954, pp. 363-6]. In some instances the
format in Davies (with •he addition of final column of half-normal
variates) may be preferred.

0
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The method of calculation of Sections II, III and IV may not be appar-

ent at first glance, but verifying part or all of the data in Table 5a from
the description above should help to clarify the process. Computing clerks
will find it helpful to write the coefficients of each contrast on a strip of
paper, appropriately oriented vertically or horizontally and spaced so
that when overlaid on the worksheet each coefficient appears adjacent
to the element to be multiplied.

S* Section V (Table 5b) merely identifies the elements of Section IV and
subsequent sections according to the contrasts they represent. This
identification is, of course, highly systematic and might well be omitted
when familiarity with the method is attained.

Section VI contains the "divisors", obtained by multiplying the sums
of squares of the coefficients of the contrasts Ap, Bq, Cr appropriate to

each element, as found in Table 3.

Section VII contains the single degree of freedom sums of squares
corresponding to each contrast. Each element is obtained by squaring
an element of Section IV, dividing by the corresponding element of
Section VI and entering in the corresponding place of Section VII.

Section VIII contains the half-normal variate values, each of which
is computed as the square root of the corresponding element of Section VII,
positive or negative according to the sign of the corresponding element of
Section IV. (It would perhaps have been advisable to include the first
decimal of each of these values in order to discriminate more fully among
them.)

Certain check computations in the method have been omitted, but an
over-all check can be readily obtained from Section VII by comparing
sums of these single degree of freedom sums of squares with the usual
analysis of variance of Table 2. These checks are indicated in Table 6.
It will be noted that all sums of squares agree with Table 2 within the
expected rounding error accumulated from Section VII.

The half-normal variates must now be ordered by magnitude before
plotting. This ordering is shown in Table 7, along with an identification
of the contrast represented (letters with subscripted zeroes have been
dropped) and the appropriate quantile of the empirical distribution, de-
fined by

4
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Table 6. DEVELOPMENT OF USUAL ANALYSIS OF VARIANCE

Source d.f. Contrasts S.S.
:i A 4 AIBoC0 A2 BoC0 A3 BoC 0 A4 BoC0  478462

B 2 AoB 1 0 AOB 2 CO 52795

C 3 AoBoC1 AoBoC2 AoBoC3  150239

AB8 A 1BIC0 ABC 0 A3 BICo A4 BiC0

AIB2 C0 A2 B2 C0 A3 B2 C0 A4 B2 C0  16808

AC 12 A1B0 Cl A2 BOC 1 A3 B0C1 A4 BOC1

A1 BoC 2 A2 BoC2 A3 BoC2 A4 BOC2

AIBoC3 A2 BoC3 A3 BoC3 A4 BoC3  53890

BC 6 AoB1 C1 AOB 1 C2 AoB1 C3

AoB2 Cl AoB2 0 2 AoB2 C3  6417

ABC 24 AIBI0 1 A2 B 1Ca A3 B 1C A4 BlCl

A1B1C2 A2 B1 2 3BC A2 BC02

AIBIC3 A2 B1 C3 A3 BIC3 A4B103

A1B2C1 A2 B2 C1 A3 B2 C1 A 4 B2 1

ABB2 C2  2BA 2 C2 A4 B2 C2

A1BC 3  A C3  • 3  64B2C3

Total 59 766301

Mean 1 A0 BoC0  6069348

Raw total 60 6835649
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Table 7. HALF-NORMAL VARIATES

Order Variate Contrast Quantile Order Variate Contrast Quantile

k Xk Pk k Xk Pk

6o 2464 Null 30 24 A3 BIC3  .5000
59 447 A3  .99i5 29 23 A4 BIC1  .4831
58 395 A1  .9746 28 22 A2 C2  .4661
57 367 C3 .9576 27 20 -A2 C1  .4492
56 294 A2  .9407 26 18 -A2 BIC, .4322
55 230 B1  .9237 25 17 A3 B2 C3  .4153
54 191 A4  .9068 24 17 -A4C 2  .3983

53 152 -A2 C3  .8898 23 17 A2 BIC2  .3814
52 132 AlC3 .8729 22 16 -A3B2C1 .3644

51 1il C2  .8559 21 15 AIB2  .3475
50 94 A2 B1  .8390 20 14 B2 C1  .3305

49 64 A3 B1 .8220 19 13 A2 B2 C1  .3136

48 59 A3 02  .8051 18 12 A2 B2 C3  .2966
47 54 -C .7881 17 11 -A4 BIC1  .2797

46 50 -A 3 B2  .7712 16 9 -A2 B2 C2  .2627
45 50 -B 2 C3  .7542 15 9 -B 2  .2458
44 47 C .7373 14 8 -A BIC .2288
43 46 A4 C3  .7203 13 7 -A4 B1  .2119

42 46 -A 3 Ci .7034 12 7 -A3 B2 C2  .1949
41 42 -AIC 1  .6864 11 6 -BIC3  .1780
40 38 A1 C2  .6695 10 5 A4 BIC2  .1610
39 36 A1 B1 C3  .6525 9 4 A1 B1 C2  .1441

39 34 A4 B2  .6356 8 4 -A 1 B2 C1  .1271
37 33 -A C .6186 7 3 -A 2 B2  .1102
36 32 AIB2 C3  .6017 6 3 AIB2 C2  .0932

35 29 -A 4 B2 C3  .5847 5 2 -A1 B1  .0763
34 29 A3 B1 C2  .5678 4 1 -AIBIC1 .0593
33 27 -A3 BIC1  .5508 3 1 A4 B2 C2  .0424

32 27 -B1C1  .5339 2 0 -A 4 BIC3  .0254
31 27 BIC2 .5169 1 0 A4C1 .0085
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P=2k -I

2n

A where k is the rank order and n is the number of variates. Here, as
in most instances, it seems appropriate that the null contrast be excluded
from the variates to be examined. The sign of the contrast is now
attached to the label and only positive variates are plotted.

The variate values and quantiles are next plotted on halfM-normal
probability paper (as in Figure 1) for interpretation. Discussion of the

interpretation phase of the analysis of this example will be deferred to
a later section.

3. SOME THEORY . At this point we shall touch briefly on some
theoretical aspects of the development of half-normal variates from multi-
level factorial experiments. To simplify the discussion we shall assume
that we are concerned with a threerfactor experiment, although it should
be remembered that the theory and methodology apply with equal validity
to any number of factors.

We denote by Yhij the observation obtained with factor A at level h,

factor B at level i and factor C at level j, where h = 1,2,..., a;
i = l, 2, b; j = I, 2,..., c. The coefficients of the orthogonal
contrasts for factor A will be indicated by aph, denoting the coefficient

for level h in the p-th contrast. Similarly the coefficients of the con-
trasts for factors B and C are denoted bqi and crj, respectively.

We assume that for each factor there is a null contrast, these being de-.
noted A 0 , B 0 , C0 and defined by

aoh boi = coj =; allh, i, j.

This section is based on well-known results concerning distributions of
linear functions of random variables and may be verified by reference
to standard introductory texts on mathematical and theoretical statistics.
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Furthermore, by the definition of orthogonal contrasts,

Zphý bqi• =j =0h

p= 1,2,..., a-i; q= 1,2,,.., b-i; r = 1,2,..., r -1;

and

"a ph ap'h bqi qi j Crj crj

Oh p';i J• q' r '
h i

The three-factor contrasts are defined by

(A pB q~r)Z Z a phb iCrYhj
h i j hq r hj

p = 0, i, .... a-i; q = 0,1,..., b-i; r = 0, 1,..., c-i.

i *
Suppose that there are no treatment effects , i. e.,

E, h = •J•;allh, i, j;
hij

and that the experimental errors are independent and have constant
variance for all observations, i. e. ,

E •(Yhij - (Y-)2  = CX2; allh, i, j.

The symbol E 3 denotes the mathematical expectation operator.
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Then

IE (A B Cr 0'O
U1 q r

unless

P=0, q=O and r =0, inwhichcase

E[A0 B C }abc -

Furthermore*

VtA B C =( a2  2' ah ph i j

Denote by Ypqr the variate defined by

2A B Z a b2Y I~q~) V( ph ) ( Z bi ) ( L' cj )"
pqr p q h 1 irhi

Then

E{ýO.Y }.=1 FL;

E [Ypqr) = 0, unless p=O, q=O, r=O;

pqqrr

If the experimental errors are normally distributed, then the Y arepqr
normally distributed. (Under fairly weak assumptions the Ypqr will tend

to be normally distributed in large experiments even for non-normal
distributions of experimental error. ) Then the non-negative half-normal
va riate s,

The symbol V denotes the variance operator, V [X3 = Et(X-E[X))2 J.



Design of Experiments 277X Y
Xpqr -Ypqr

B)C a2  ( ' bqi( cr );p,q,rQ 0,0,0;

P qr h ph .j rjh i i

are indeed distributed according to the half-normal density

f(x) V= /Z/T Oz exp(-Xz/Z oZr, X > 0

X< 0.

From this result, the half-normal variates for multi-level experiments
may be seen to be ezssentially equivalent to those for ZP experiments,
making the work of Daniel 1959 and Birnbaum 1959 relevant to the
interpretation.

4. INTERPRETATION OF EXAMPLE. We shall turn now to the
interpretation of the example given earlier. Some difficulty will be
experienced because of our ignorance of the precise nature of the factors
and their levels, the experimental techniques and the observations them-
selves, but we shall attempt to proceed along lines suggested by Daniel
for 2 P experiments.

To recapitulate the results of Section 2, we have, in Table 7, 59
ordered variates Xk M Xpqr whose empirical cumulative distribution

should resemble the cumulative half-normal distribution under the
hypothesis that there are no treatment effects. We have plotted these
values against their quantiles in Figure 1, where they should be approxi-
mately linear under the null hypothesis.

We note at a glance that the plotted points are markedly and systemati-
cally non-linear. In fact, a little preliminary geometrical construction
leads us to believe that a number of the variates are too large to have
arisen by chance under the null hypothesis. The rationale for this belief
is as follows. Under the null hypothesis the standard deviation, GT, is
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directly approximated by the value of X where
m

m = (0. 683 n + 0. 5),

= 41, approximately.

From Table 7,

X = 42.

Then, under the null hypothesis, the plotted points should lie near a
straight line through the origin and the point (Xm, Pm), indicated in

Figure 1. Should the largest X lie "far enough" to the right of this line
it is reasonable to presume that it did not arise by chance under the null
hypothesis. It may then be taken as real and the next largest X promoted
to the largest. This is roughly equivalent to increasing the ordinate bf
the second point to that of the first point. Should this replotted point also
lie "far enough" to the right of the line, it too may be judged real and
excluded, promoting the next X to the largest, etc. In Figure 1, we make
a crude test of the largest values by constructing a horizontal through
the largestpoint to intersect the previously constructed empirical cu-
mulative distribution line. From this intersection we drop a vertical
line and observe that all contrasts represented by points lying to the right
of this verticalwould have to be excluded before the largest X would lie on
or above the original c. d. line. In this crude manner we judge from
Figure 1 that six to ten of the largest values of X would be unlikely to
occur under the null hypothesis. This graphical construction is no
"exact" test; in fact it is rather likely that one or more contrasts would
be judged "real" in this manner even if the null hypothesis did, in fact,
hold. There is one element of conservativism in this procedure, in that
the plotted c. d. line is based upon all contrasts, while a c. d. line based
only on contrasts not judged "real" at this stage would lie to the left of
the original line.

Let us tentatively suppose that the six largest contrasts (A 3 . A1 ,

C 3 , A?, B1 , A4 ) are real, considering (after Daniel [1959, p. 315 )

their simple names, as well as their magnitudes relative to the rest of
the set. We plot anew the 53 remaining contrasts in Figure 2. Actually,
in addition to the ten largest remaining contrasts, only a fraction of the
points are plotted, together with the c. d. line through (Xm, P r), wherem
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m = (0. 683) (53) + 0.5,

= 37, approximately.

The values of P are, of course, recalculated for n = 53. It appears

reasonable to judge from this plot that the four largest contrasts
(A 2 C 3 , A 1 C 3 , C2 , A B1 ) are real.

A final plot of the values obtained after eliminating the ten largest
values is shown in Figure 3. It appears in this plot that all real effects
have been removed, with a residual error standard deviation approximately

equal to

2X = 841X34

(The actual mean square of the 49 residual contrasts is 816.)

Some further details of interpretation might be attempted. For ex-
ample, there is a suggestion in Figure 1 and in Table 7 that there may
have been plot-splitting, with factor B applied within plots. This also
appears plausible from the rudimentary information given as to the
nature of this factor. A further plotting, not shown here, in which con-
trasts including B1 or B 2 were separated from those containing B 0
suggests a whole plot standard deviation of about 50-60 and a split-plot
standard deviation of about 20-25.

5. COMPUTER USE. We have used half-normal plots for multi-
level factorial experiments for almost two years. Our first major attempt
to employ this technique was in the analysis of an unreplicated 10 x 5 x
3 x 22 experiment. The factor levels in this experiment were applied
in a split-split-split plot design and certain problems of variance hetero-
geneity were apparent. The half-normal plotting of this data was suffi-
ciently informative that it appeared worthwhile to develop a program for
the IBM 1620 to be employed in computing half-normal variates from
multi-level factorial data. This program, Single Degree of Freedom
Analysis of Variance (SIDOF), has a capacity of eight factors, each at
two to ten levels. It requires as input the observations and normalized
vectors of contrast coefficients M, • r' etc., where

p q1 ret.whe
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ph = apha h h = 1, 2, ... , a;

S 2
b br i 1, 2, b

1 rj crjf crj , j =1,2,..., c;

etc.

Each factor requires an additional "pass" through the machine. On the
first pass, the mnachine computes the quantities (assuming three factors),

(p =ij Z' %h Yhij"

h

On the second pass are computed the quantities.

(A B ) Z qi(Ap)ijP qJq i j

and on the third pass the quantities

(ABC)= Br (ApB).pqr .rj p q

At each pass the output includes both the (signed) contrasts developed and
their squares. This program was one of the first developed for the IBM
1620 at Dugway Proving Ground and consequently was employed for a
short period of time as a general-purpose analysis of variance. (It is,
of course, much slower than other general-purpose programs available.)



284 Design of Experiments

6. EXPERIENCE. Some general comments on our experiences with

half-normal plots for multi-level factorials may be in order. We shall
be guided in this commentary largely by the approach of Daniel [19593 .

a. Graph Sheets. We have generally used half-sheets of the Prob-
ability Scale x 90 Divisions paper available from Keuffel and Esser
(Nos. 358-23 and 359-23). Similar papers are available from several
other sources. These papers are not particularly well-suited to the pur-
pose. It would appear that special half-normal paper might be commer-
cially feasible, but it is not, to our knowledge, currently available.

b. Birnbaum's test statistic. The test statistic developed by
Allan Birnbaum[1959] has been used for our purposes. Birnbaum's
work has been particularly oriented toward ZP experiments and studies
of the behavior of this statistic in multi-level factorials v'ould be useful.

c. Defective values. Daniel indicates the utility of half-normal
plotting in 2P experiments for detecting defective values. For multi-
level factorials the presence of defective values appears more difficult
to diagnose, particularly with unrestricted sets of orthogonal contrasts.
The isolation of the particular defective values is also more difficult.

d. Plot-splitting. The effect of plot-splitting upon the half-,normal
plots for multi-level experiments is similar to that described by Daniel.
We have some reservations concerning indiscriminate searches for plot-
splitting, however. It is generally accepted that in most experiments
two-factor interactions tend to be smaller than main effects, three-
factor interactions tend to be smaller than two-factor interactions, etc.
(Here we are speaking of real effects and interactions, though perhaps
of negligible magnitude. ) Thus in actual experiments the slope of half-
normal plots may be expected to increase with the relative number of
high order interactions included. The plotted results of an experiment
involving a number of small but real interactions may appear very simi-
lar to the results induced by plot-splitting, since split plot error con-
trasts invariably contain a relatively larger number of the higher order

The graph sheets used in Figures 1, 2, and 3 were reproduced from
a master kindly provided by Mr. Daniel. It is hoped that such sheets
will soon be published.



Design of Experiments 285

contrasts. Our practice is generally to employ a split plot analysis
only when knowledge of the experimental techniques indicates its pro-
priety.

e. Convexity of plots. The detection of antilognormal distribution
of error by downward convexity of half-normal plots appears difficult,
as indicated by Daniel 17959, p. 336]. Most of our anailysis work is,
however, based on transformed data and we have seldom experienced
this particular anomaly. In any event, the averaging effect of the con-
trasts would presumably minimize the effects of non-normality of error.
On the other hand, we have noted that the removal of a moderate number
of points representing apparently real effects often results in a downward
convexity of the ypper portion of the plot. We generally attribute this
appearance to the inadvertent removal of one or more points zepresenting
error contrasts, for the result looks very much like the plot of a normal
distribution with truncated upper tail.
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